

Presented By:

Dean A. Dunn, PE

Orion & Space Exploration Team Chief, Launch Vehicle Operations

DCMA Defense Contract Management Agency

Collaborative Relationships/Partnerships

- US Space Policies encourage partnership between US agencies
- Budgets motivate collaborative efforts
- Space Cultures enhance cooperative spirit
- NASA demonstrates an exceptional cultivation of cooperative spirit
 - Environmental, Sustainment, Energy provide an outstanding baseline for International participation
- DoD is very appreciative to have NASA as a partner
 - DoD looks forward to continued participation with NASA & International partners in future efforts that benefit all those that participate

Vision

Constellation Program

New vs. Old

Primary Work Locations

- Systems & Design Engineering Support
- Subcontract Management

LM GRC

SM Liaison Office

Hamilton Sundstrand A United Technologies Company

- Environmental Control & Life Support
- Active Thermal Control
- System Power Management

- Abort Motor and Jettison Motor
- Safety & Mission Assurance

ATK Elkton

Attitude Control Motor

LM LaRC

• LAS Liaison Office

OCKHEED MART

KSC

- Final Assembly
- Checkout
- Acceptance Test
- Sustaining Engineering
- Spacecraft Refurbishment

AEROJET • Propulsion

Honeywell

- Avionics
- Integrated System **Health Management**
- Crew Interface
- Mission Ground Ops Support

KHEED

- Program Management
- Systems Integration
- Crew Module Development
- Service Module Development
- Qualification Test
- Software Development

- Ground Processing
- Mission Flight Planning
- Software Development

Michoud

 CM and SM Structures

DoD Re-Delegation Structure

Orion Project

NASA Roadmap

Major Milestones

Challenges

- National Priorities
 - Augustine Panel recommendations under review
- Cost & Schedule
- Technical

KSC Operations & Checkout

Early Intervention

- Orion completed PDR milestone (10% equivalency)
 - Many subsystem manufacturing process have been defined
- Orion heading for CDR (complete 2011)
 - Many subsystem manufacturing process will be written into stone Influence MRB and ERB process?

 - TRAINING, TRAINING, TRAINING?
- **Lesson Learned from Shuttle**
 - Design Engineers incorporating "Green Engineering" principals/properties in Sub-**System Designs**
 - Incorporation of environmentally friendly alternatives (materials, processes etc)
 - Shuttle Environmental Assurance (SEA) team Template
 - Obsolescent issues, future impacts pending legislation, common problems, alternatives analysis etc
- GREEN ENGINEERING CHALLENGE FOCUS ON A "PROGRAM"

•	Green Engineering Summit	
•	Location:	Colorado
•	Date:	2010 (before CDR)

Showcase a National Program – "FACE ON GREEN ENGINEERING"

- Purpose:
 - Integrate pollution prevention into Space systems
- Objectives:
 - Enhance system performance
 - Reduce total ownership costs
 - Reduce environmental, safety and occupational health (ESOH) risks / burdens
- Scope:
 - Identify, research, demonstrate, validate and implement material substitutions and process improvements
- Partners: NASA, DoD, International Partners

Programs

- Space Lift Launch Coatings
- Hypergolic Rocket Fuels
 - Microwave Scrubber
- Range Operations
 - Composite Structures
- Internal Ohmic Value Recovery (IVOR)
- Cold Spray Technology

Space Lift Launch Coatings

- Purpose: Demonstration/Validation of Space Lift launch coating systems
 - Select environmental friendly coatings Low/novolatile organic chemical (VOC), non-hazardous (non-chromate, cadmium free etc), Isocyanate free
 - Test coating systems on a "live" launch complex
 - Reduce environmental, safety, and occupational health concerns with current systems
 - Reduce O&M costs
 - Increase coating survivability and performance

NASA Beach Testing

Launch Coating

- NASA completed Beach Testing on coating systems
 - Round 1: Two of three coatings passed 18 month beach corrosion exposure tests
 - Round 2: Four additional coatings in testing
 - All coatings are Environmentally preferable systems (Non-chromate, no/low-VOC systems usable in California/Florida for Space Lift applications)
 - All coatings passed Hypergolic compatible, High Temperature screening prior to beach test

CCAFS Operational Environment

- Explosive pre-launch ground hazard areas (QD Arc)
- Post-launch combined
 Impact Limit Lines (ILL)
 encompass entire Cape
- Critical Facilities
- Hazardous material & fuel storage areas
- Wildlife refuge areas
 - Safety buffers
- ★ Planned admin campus
- Industrial area
 - Population center

Cape Canaveral Testing of Launch Facility Coatings

SLC 17

100% Zinc metallize on removable heat shield

Delta 2 Launch from SLC-17B

Thermal Spray Program

Background

- Thermal Spray (metallization) Coating Technology identified as a replacement to existing outdated/hazardous coating systems
 - No VOCs, No Particulates, Minimal worker PPE
- Technology application developed early 1900s. Primary usage are mild strength steels
 - Operator application was cumbersome until late 1990s
 - Manufactures began to redesign and produce compact units increasing system portability and usability
- Launch program burdened extensively with large re-work/repair and environmental/occupational health burdens of existing coatings
- Launch Facilities exposed to "Harsh" coastal atmospheric environments causing corrosion failures

Thermal Spray Program

Background

- HQ AF Space Command initiated the evaluation of "thermal spray" technology application to Launch program
- Sub-scale and laboratory program initiated with support of AF Research Laboratory
 - Developed Test Plans
 - Verified Corrosive Protection properties, Environmental & Health Benefits, Sustainability and Life Cycle costs
- Developed comprehensive organizational approach to obtain buyin on technology
- Sub-scale tests revealed conservative 20 year life in corrosive coastal environments
- High temperature and hypergolic compatibility testing completed
- NASA Beach testing complete

Field Testing Thermal Spray Coating

- Field Testing Demonstration/Validation
 - Joint AFSPC/NASA Dem/Val Test Plan developed and approved
 - Live Launch Facility was approved for testing of coating system
 - Two coatings selected 100% Zn & Al/Mg
 - Coating exposed to actual launch gases during NASA mission
 - No degradation of metallized coating after launch gas exposure
 - Versus, baseline coating system completely fails and requires replacement prior to next test launch
 - Coating approved for 2nd Launch exposure

Hypergolic Microwave Scrubber

Hypergolic Microwave Scrubber

Microwaves

Microwaves Application in Heating Food

Jan. 24, 1950

P. L. SPENCER

TREATING FOODSTUFFS

2,495,429

Filed Oct. 8, 1945

rom Spencer Family Archives

A Brief History

1946: Original patent (P. L. Spencer)

1947: First commercial oven

1955: Home models

1967: Desktop model

1975: U.S. sales exceed gas ranges

1976: 60% of U.S. households have

microwave ovens

Hydrazine Destruction Apparatus

Hypergolic Microwave Scrubber

Range Operations

Eastern Range

DCMA Survivability of Range Coatings in Coastal Area

Containment

Thermal Spray Technology- Coastal Range

Eastern Range Metallized Structure

Range Operations

Composite Benefits

- Reduced Maintenance/Increased Life Cycle
 - High strength/weight ratio
 - Non-corrosive
 - Electromagnetic improvement (Non-conductive)
- Environmentally Friendly
 - Reduces hazardous waste streams
 - No painting required (Elimination of Chromates, Cadmium, Isocynates, & VOCs)
- Innovative Designs
 - Tilt-down/freestanding design for Towers
- Easy to Transport/Install
 - 1/3 the weight of steel
 - Utilize the existing foundation

Composite Range Towers

- Tower #60 at Western Range
 - 60-ft Composite Sensor Tower
- Tower #215 at Cape Canaveral
 - 60-ft Composite Sensor Tower
 - No damage to tower during hurricanes Frances and Ivan

Instrument Tower

- Tilt-down composite
- SBIR funded composite technology for tower development

Interior View

Proposed Free Standing

Proposed Composite Tiltdown Weather Poles

- No Climbing (or man-lift) required
- Safer work environment
- Free-standing (non-guyed)
- Lowering mechanism powered by handdrill motor
- Rapid lowering for efficient operations

- Proposed Composite Fixed Site Shelter
 - 8 ft. by 10 ft. shelter replacement
 - Lightweight
 - Improved corrosion resistance over metal shelters
 - No paint required

Sever Coastal Corrosion of conventional metal shelters

Advanced Composite Radome

Composite Radome

- 9-ft functional replacement
- Increased strength to withstand 212 mph winds
- Cost: \$25K vs. \$1.7Mil
- Low Maintenance with no periodic painting required

- Uninterruptible Power Supplies (UPS)
 - Utilize Valve Regulated Lead Acid (VRLA) absorbed mat batteries
 - Single cell 1000's installed per location such as AF Satellite Control Network Stations at Onizuka and Cheyenne Mtn.
 - Current Battery Life of 5-7 years
- IOVR technology claims to restore capacity and extend useful life through rehydration and insertion of catalyst vent cap
 - Philadelphia Scientific Battery Research & Testing
 - Process catalyst removes excess oxygen
 - Permits negative plate to recharge
 - 12 battery strings under testing

- Existing Battery Condition tested IAW IEEE Standard 1188
 - Internal Ohmic value recorded
 - Replaced cell water lost through off gassing and resaturating of the mat
 - Perform Insulation Breakdown Test
 - Replace Vent Caps
 - Pressure Test Each Cell
- Install Catalyst Vent Assembly
 - Baseline battery terminal, individual cell voltage & Ohmic values
 - Reconnect Battery String

Battery String

Catalyst cap

Catalyst Cap installation

Demo/Validation Kinetic Energy -Cold Spray Technology

Gas Dynamic Spray

- Industry referred as "Cold Spray" or "Kinetic Energy"
- Russian systems developed in the mid 1980's
- Gas media used to accelerate particles to supersonic velocities
- Dual capability surface preparation & surface coating application in one unit
- Environmentally Friendly No Chromates, No VOCs, Isocyanate
 Free
 - Equipment under Review by State of California for "open air" use environmental certification

Gas Dynamic Spray

Supersonic Flow

Stages of Process

Surface Cleaning and Activation

Formation of a Coating Substrate

Formation and densification of the layers by flow of high-velocity particles

Cold Spray Demonstration

Cold Spray Demonstration

Missile Launch Equipment Cover

Cold Spray Demonstration

Cold Spray Demo - Launch Equipment Cover

Cold Spray unit completed both surface prep & coating application

NASA DoD Joint Efforts

Launch coating test facilities

Laser Coating Removal System

Green Rocket Propellants

Launch coating containment system

Isocyanides elimination

Lead Free Solder

Teflon reformulation

Leave No Trace

Questions?

Back Up

NASA LODs

Two Separate Delegations

Product Assurance

- Customer
 - Orion Safety & Mission Assurance
- Quality (Product) Surveillance
 - Document Reviews
 - Product Assurance
 - Design / Dev Eng Assessments
 - Government Mandatory Inspection Points (GMIPs)
 - Record Reviews
 - Quality System Audits
 - Limited MRB Authority
 - Safety (Explosives)
 - Indemnification

Customer

- PCO
- COTR
- PP&C
- Business System Surveillance

Contract Admin / EVMS

- Purchasing, Estimating, Accounting, Compensation, Subcontract Consent
- EVMS Surveillance
 - System Acceptance
 - System Surveillance
 - Project Surveillance
 - IBR Support
- Cost / Schedule / Performance Surveillance
 - FAR 42.302(a)(40)

Orion PST

Augustine Panel Orion Summary

- Orion is a good technical approach for the requirements.
- Concerns:
 - Orion recurring costs high; Alternate Option Smaller and lighter Four-person Orion could reduce operational costs:
 - Redesign of this magnitude would likely result in over a year of additional development time and a significant increase in cost,
 - Ares I behind schedule; Alternate Option Promote commercial launch capability:
 - Possibly cheaper and quicker
 - Supplement or replace Orion / Ares I?

Major Efforts

- Preliminary Design Review (PDR): Aug 31-Sep 1
- Working Communications and Tracking (C&T) contract mod and incorporating architecture into IMS
- Synchronizing Cost, Schedule, and Technical baseline in preparation of the CCO24 Integrated Baseline Review (IBR)
- Developing Requirements Baseline to begin Design Analysis Cycle 4 (DAC-4) on 1 Oct
 - Getting Ares I Loads Analysis
 - Working NTE Proposal for numerous post-PDR requirements changes
- Pad Abort 1 (PA-1):
 - Likely slipping to early April
 - Quallion Battery failure impacting Critical Path

Other CxP Projects' Status

Ares I:

- 1st Stage Thrust Oscillation Issue addressed
- Issues with 5 segment test at ATK Thiokol
- Ares 1-X scheduled for Oct 09.
- PA-1 Apr 09.

Ares V:

- Growing in payload capacity and size:
 - Five to six 1st stage engines
 - Wider, taller

Altair:

- Conceptual Design Contracts let
- Procurement on hold pending Augustine Panel

EVA:

Prime Contract let to Oceaneering

AFSPC & NASA Launch

Depaint with Blast Recovery System (BRS)

DCMA

GE Ablative Application

Metallization

